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As we set into the second half of 2022, the world is still recovering from the two-year COVID-19 pandemic.
However, over the past three months, the outbreak of the Monkeypox Virus (MPV) has led to fifty-two thousand
confirmed cases and over one hundred deaths. This caused the World Health Organisation to declare the outbreak
a Public Health Emergency of International Concern (PHEIC). If this outbreak worsens, we could be looking at the
Monkeypox virus causing the next global pandemic. As Monkeypox affects the human skin, the symptoms can be
captured with regular imaging. Large samples of these images can be used as a training dataset for machine
learning-based detection tools. Using a regular camera to capture the skin image of the infected person and
running it against computer vision models is beneficial. In this research, we use deep learning to diagnose
monkeypox from skin lesion images. Using a publicly available dataset, we tested the dataset on five pre-trained
deep neural networks: GoogLeNet, Places365-GoogLeNet, SqueezeNet, AlexNet and ResNet-18. Hyperparameter
was done to choose the best parameters. Performance metrics such as accuracy, precision, recall, f1-score and
AUC were considered. Among the above models, ResNet18 was able to obtain the highest accuracy of 99.49%.
The modified models obtained validation accuracies above 95%. The results prove that deep learning models such
as the proposed model based on ResNet-18 can be deployed and can be crucial in battling the monkeypox virus.
Since the used networks are optimized for efficiency, they can be used on performance limited devices such as
smartphones with cameras. The addition of explainable artificial intelligence techniques LIME and GradCAM
enables visual interpretation of the prediction made, helping health professionals using the model.

1. Introduction

The first half of the year 2022 saw the gradual decline of the severity
of the COVID-19 pandemic, after its third wave that began in January
2022 However, just a few weeks later a new threat emerged which
quickly grew into a global outbreak and could soon become a pandemic.
The Human Monkeypox disease is not a new and novel disease [1]. The
first infection identified as early as 1970, with cases increasing over the
following decade. This is also not the first Human Monkeypox outbreak,
as there was the 2003 Midwest Monkeypox Outbreak and the 2017-2019
Nigeria Monkeypox Outbreak [2]. There have also been few cases of the
disease infection cropping up in isolated cases in the United Kingdom,
Singapore, and other parts of the United States of America [3]. However,
the current 2022 Monkeypox outbreak has spread to over a hundred
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countries and territories over the past nine months [4]. Due to the mode
of transmission of the virus, it is comparatively less contagious [5].
However, the need for a low cost and rapid detection system is of para-
mount importance since it is still spreading.

The virus is a member of the Poxyviridae family [6]. Mammalian
species such as squirrels, rats and other primates have been identified as
natural hosts of the virus. The disease that the virus causes is an infec-
tious disease that lasts between two to four weeks, with the usual onset
about five to twenty-one days post exposure. Currently known symptoms
include fever, muscle and headache, shivering, swollen lymph nodes and
blistering rashes [7]. The onset of these rashes is within three days and
appears on the face, palms, and foot sole of the patient. It can also spread
to mouth, eyes and genitals. This phase is followed by the skin eruption
phase where the lesions worsen in four stages. It begins with lesions
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having flat bases (macules) and progresses to become raised and firm
lesions (papules). These papules then get filled with puss (pustiles) which
then forms a solid crust [8].

The current method for the detection of Human Monkeypox is by
using a Polymerase Chain Reaction (PCR) test. However, the results ob-
tained by this test is not accurate as they can be inconclusive due to the
virus remaining in the blood for a short time [9]. It also requires addi-
tional information such as current stage of the rashes, patient age and the
dates of onset of fever and rashes. PCR tests also require a considerable
amount, hampering its availability in rural or remote areas. A system that
is independent of these metrics and can use real time data for near perfect
diagnosis using readily available devices could be the solution to creating
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Fig. 1. Examples of skin lesions of Monkeypox patients.
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an effective and efficient diagnosis modality for Monkeypox. The usage
of Artificial Intelligence and its sub-units is not new to the world of
healthcare [10]. Deep neural networks for computer vision applications
in the domain of healthcare can leverage the wide availability of
healthcare data to train Convolutional Neural Networks that can use
pre-existing devices to solve emerging problems [11]. This is the
approach taken here to develop a model for the detection of Monkeypox
using RBG images of skin lesions taken from regular cameras on smart-
phones. The sample images of this dreaded disease are described in
Fig. 1.

A few researches have been conducted which use deep learning to
diagnose Monkeypox disease. Sitaula et al. [12] used deep learning to

c
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Fig. 3. Illustrative example of the fourteen-fold augmentation on an image from the ‘Monkeypox’ class. Image a: original image. Images b-n: Augmented images.
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diagnose monkeypox virus. Thirteen different models were used to train
and test the data. They were further ensembled for optimization. An
average accuracy of 87.13% was obtained by the models. In another
research, deep pre-trained network was used to classify monkeypox using
skin lesion images [13]. An android application was developed to facil-
itate this research. A maximum accuracy of 91.11% was obtained. Alakus
et al. [14] used Wart DNA sequences and deep learning models to
distinguish monkeypox from warts. Three stages were used in the clas-
sification process and maximum accuracy of 96.08% was obtained.
“AI-BIRUS Earth Radius Optimization Algorithm” was used to classify
images in Ref. [15]. Ten different evaluation metrics were used in the
study. An accuracy of 98.8% was obtained by the algorithm. The mon-
keypox can cause the next pandemic and it is critical that the resources
should be utilized efficiently. AI can help in many ways including disease

l imagelnputLayer I

I

l convolution2dLayer I

I

’ rcluLayer |

I

‘ maxPooling2dLayer |

I

’ crossChannelNormalizationLayer |

I

l convoluyion2dLayer I

I

’ rcluLayer ’

I

l convolution2dLayer |

I

l relulayer l

I

l crossChannelNormalizationLayer |

I

’ maxPooling2dLayer

|
1 .

| Repeating Unit

l

I convolution2dLayer ‘

Medicine in Novel Technology and Devices 18 (2023) 100243

diagnosis. In this study, we utilize a variety of transfer learning models to
classify monkeypox images.
The objectives of this research are as follows.

e The utilization of deep learning models such as GoogleNet,
Places365-GoogleNet, SqueezeNet and AlexNet and ResNet-18 to
detect monkeypox virus with high accuracy.

e Comparison of the above models regarding performance metrics such
as accuracy, precision, recall and fl-score. We also compare our
research with other existing researches.

e Further discussion about how the models can be utilized in real time
or accurate diagnosis.

The approach taken here is to leverage the performance of modern
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smartphones and the capabilities of their cameras to develop a fully self-
contained diagnostic modality. The usage of modified pre-trained net-
works aided by providing a solid foundation for further hyper-parameter
tuning during the training of these networks are also explained in depth.
The networks selected have also been built around efficiency, ensuring
reliable and efficient performance on relatively low-performance devices
such as smartphones. Validation accuracies above 95% have been ob-
tained by most models.
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2. Methodology
The methodology section is divided into five sections: data collection,
data augmentation, transfer learning approaches and the experimental
setup used.

2.1. Data collection

The dataset which is used to train the transfer learning models is titled
“Monkeypox Skin Lesion Dataset” [16]. It is a binary classification
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dataset for Monkeypox v/s non-Monkeypox images and is available on
Kaggle (an online community of data scientists and machine learning
practitioners). The dataset is a collection of 228 images which comprises
of 102 Monkeypox & 126 other (chickenpox & measles) cases. The im-
ages have a resolution of 224 x 224 x 3. Fig. 2 describes some of the
images of both classes.

2.2. Data augmentation

The dataset obtained had its original dataset augmented by the cre-
ators themselves. Augmentation of datasets in training deep neural net-
works is used to increase the size of the dataset to improve the
performance of the network [17]. They used augmentation methods such
as rotation, translation, reflection, shear, hue, saturation, contrast and
brightness jitter, noise and scaling. In total, fourteen-fold augmentation
was performed on the original dataset, bringing the number of images in
each class to 1428 in ‘Monkeypox’ class & 1764 in ‘Others’ class. Some of
the augmented images are described in Fig. 3.

2.3. Deep learning approaches

For the evaluation of the model on the given dataset, a pilot run was
run with the augmented dataset on multiple pre-trained deep neural
networks in MathWorks MATLAB's Deep Network Designer. The selected
networks were GoogLeNet, Places365-GoogleNet, SqueezeNet and
AlexNet and ResNet-18. This selection was mainly made due to the
performance efficiency of the networks, with the first three networks
being built specifically with efficiency in mind. Due to the pre-
established performance reliability of AlexNet and ResNet-18 in past
researches involving skin lesion classification, they were included too.
Due to the availability of these networks on MATLAB 2022b as add-on
packages, all the trials on all the networks were run on the Experiment
Manager app within MATLAB 2022b with all relevant pre-trained net-
works installed and loaded.

2.3.1. GoogleNet & GoogLeNet trained on Places-365 dataset

GoogLeNet is a deep convolutional neural network developed by re-
searchers at Google Inc as a variant of Inception Network [18]. Goo-
gleNet architecture has twenty-seven layers (when pooling layers are
included) which have nine inception modules. There are about one
hundred layers (building blocks) used in the architecture. The architec-
tural details of the auxiliary classifiers are as follows: Average pooling
later of filter size 5 x 5 and stride 3, 1 x 1 convolution with 128 filters for
dimension reduction and ReLU activation, fully connected layer with
1025 outputs and ReLU activation, Dropout Regularization with dropout
ratio = 0.7, Softmax classifier with 1000 classes output like the main
softmax classifier. The GoogLeNet architecture is designed to be
computationally efficient and work on devices with low system memory.

The main difference between GoogLeNet and Places365-GoogLeNet is
the dataset used for pre-training. GoogLeNet used the data from the
ImageNet data from the ILSVRC 2014 Classification Challenge.
Places365-GoogLeNet is the same network, pretrained on the Places365-
Standard dataset [19]. In both, GoogleNet & Places365-GoogleNet, there
are two modifications made in the fully connected layer and classification
layer. These layers have been trained with datasets that default it to 1000
classes on both layers. Since the given dataset used here, output size = 2
on the fully connected layer which when trained, assigns two classes to
the classification layer. The architecture if GoogLeNet is given in Fig. 4.

2.3.2. SqueezeNet

SqueezeNet is a deep neural network for computer vision developed
by researchers at DeepScale, University of California, Berkeley, and
Stanford University with the intention of creating a smaller neural
network with fewer parameters to be more computationally efficient
[20]. The architecture of SqueezeNet starts with a convolution layer
(convl), ending with final convolution layer (conv10). It has Eight Fire
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Fig. 6. Architecture of AlexNet.

modules. It also performs max-pooling with stride of 2 after conv1, fire 4,
fire 8 and conv10. Dropout with a ratio of 50% is applied after fire 9
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module. To adjust to dataset, final convolution layer conv10 has modi- Krizhevsky, Ilya Sutskever and Geoffrey Hinton and won the ImageNet
fied NumFilters = 2 since the dataset has two classes. No additional Large Scale Visual Recognition Challenge (ILSVRC) 2012. The architec-
layers are added. The architecture of SqueezeNet is given in Fig. 5. ture of AlexNet has 25 layers, out of which are five convolutional layers.
The first, second and fifth convolutional layers also have Max-Pooling

2.3.3. AlexNet Layers. These Max-Pooling layers are overlapped, having strides of 2
AlexNet is a convolutional neural network developed by Alex with filter size 3 x 3. Dropout layer in the network decreases overfitting
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Table 1

Hyperparameters used across all trials.
Parameter Values
Mini Batch Size [16 32 64]
Learning Rate [0.01 0.001]

Table 2
Distribution of Training & Validation data.

Dataset Training (80%) Validation (20%)
Class Class Class Class
‘Monkeypox’ ‘Others’ ‘Monkeypox’ ‘Others’
Augmented 1411 1142 353 286
Dataset
Original 82 101 20 25
Dataset

of the network and it is recommended to use augmented dataset for
training [21]. The architecture of AlexNet is given in Fig. 6.

2.3.4. ResNet-18

ResNet is a reliable and performant deep neural network that won
ILSVRC 2014 Classification Challenge and has given good results on the
ImageNet dataset. ResNet has many types, depending on the number of
layers in the network. ResNet-18 used here has eighteen layers [22]
Using shortcut connections in the architecture, ResNets can solve the

13-Fold Data Augmentation
is For Transfer

" Pre-Trained Mo
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vanishing problem. Residual Networks have also been widely used in
healthcare applications. The architecture of ResNet is described in Fig. 7.

2.3.5. Vision transformer

Vision Transformer (ViT) are transformer-based architecture that
achieve robust performance in image classification tasks. Self-attention
mechanism is used in the ViT that allows it to selectively focus on
different parts of the image. The Vision Transformer extracts global
features by dividing the image into a sequence of patches and feeding
them though a transformer-encoder. This is in start contrast to Con-
volutional Neural Networks such as GoogLeNet, ResNet-18, AlexNet &
SqueezeNet that all use fixed size filters to extract local features, not
global features. Described in our study is ViT-B16. It is a ViT model that
has a transformer encoder trained on the ImageNet-21 K & ImageNet-
1Kwith 16 layers and a patch size of 16 x 16 pixels [23].

2.4. Experimental setup

The experiment was conducted on a laptop with an Intel Core i7
10750H and 16 GB memory. The execution environment for the training
and validation of the networks was set to the single GPU: Nvidia GeForce
GTX 1650 with 4 GB VRAM. The Experiment Manager on Mathworks
MATLAB 2022b was used to perform the experiment. The experiment
was run four times, once for each network with varying hyperparameters:
Mini Batch Size and Learning Rate. The details of the hyperparameters
used for tuning are detailed in Table 1. Given the variation of the
Learning Rate & Mini Batch Size, the Epoch Size for all trials was

Setting hyperparameters
learning rate & mini batch size
Class 'Others*

Class "Menkeypox"

Fig. 8. Flow diagram used in this research to classify monkeypox.

Table 3
Training and Validation Results for all the models.

Trial Learning Rate Mini Batch Size Training Training Validation Accuracy (%) Validation Loss
Accuracy (%) Loss
GoogLeNet
1 0.001 32 100 7.8E-06 97.8697 0.0744
2 0.001 16 100 0.00014 97.4937 0.1144
3 0.001 64 100 3.5E-05 97.11779 0.1272
4 0.0001 16 100 0.0002 96.49123 0.2138
GoogLeNet (Places-365)
1 0.001 64 100 3E-05 97.61905 0.0948
2 0.001 32 100 8.3E-07 97.36842 0.0940
3 0.001 16 100 4.7E-06 97.36842 0.1280
4 0.0001 32 100 3.1E-05 96.11529 0.2099
SqueezeNet
1 0.001 16 100 7.0777E-06 98.08153 0.1813
2 0.001 32 100 0.0002 96.36591 0.1505
3 0.001 64 100 1.126E-05 95.3634 0.2747
4 0.001 128 100 0.000012038 94.61153 0.245
AlexNet
1 0.0001 16 100 5.6624E-07 97.61905 0.1058
2 0.0001 32 100 0.000020707 96.2406 0.1995
3 0.001 64 100 0.000011415 96.11529 0.198
4 0.0001 128 100 0.001 96.61404 0.1862
ResNet18
1 0.001 32 100 1.33E-06 99.4987 0.0375
2 0.001 16 100 1.71E-07 99.4987 0.0235
3 0.001 64 100 1.51E-05 97.7444 0.0784
4 0.0001 32 100 0.0001 97.619 0.0662
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Table 4
Values from confusion matrices for all the deep learning models.

Trial True Positive True Negative False Positive False Negative
GoogLeNet

1 345 436 5 12
2 347 431 10 10
3 344 431 10 13
4 340 430 11 17
GoogLeNet (Places-365)

1 345 434 7 12
2 345 432 9 12
3 342 435 6 15
4 343 424 17 14
SqueezeNet

1 384 434 7 9
2 336 433 8 21
3 340 421 20 17
4 333 422 19 24
AlexNet

1 344 435 6 13
2 332 436 5 25
3 337 430 11 20
4 328 435 6 29
ResNet-18

1 353 441 0 4
2 355 439 2 2
3 346 434 7 11
4 345 434 7 12

standardized to 200 Epochs, with validation frequency set to 5 Epochs.

Table 2 contains the dataset that was used during the training and
validation of the three deep networks. The networks were trained and
validated only on the augmented data set, with 80% of the combined
images from both labels used for training and 20% used for validation.
During validation, the data set was randomized for more accurate vali-
dation. Fig. 8 describes the entire process used in this research to classify
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describes the performance metrics used in this research. The second
section is used to explain the results obtained by the various transfer
learning models. In the final sub section, we describe how the models can
be used in real time to combat the monkeypox virus.

3.1. Performance metrics

The performance of the three networks has been evaluated using
results obtained from the associated confusion matrix for each trial. For
evaluation the parameters used are precision, sensitivity, specificity,
accuracy and F1-Score [24].

e Confusion matrix: It is a 2 x 2 matrix during a binary classification.
It consists of true positives, true negatives, false positives and false
negative values. True positive cases occur when the number of class
‘Monkeypox’ samples identified correctly. True negative cases occur
when the non-Monkeypox (‘others’) cases are identified accurately.
False positive and false negative results are wrongly predicted results.
False positive results occur when non-Monkeypox (‘others’) are
identified wrongly. False negative occurs when Monkeypox cases are
predicted wrong. The models perform well when false positive and
false negative cases are minimized.

Precision: Precision is a metric which emphasizes on the true positive
and false positive results. The precision is high when the false positive
cases are low. It is calculated using equation (1).

True positives

(€8]

Precision = — —
True positives + False positives

e Specificity: Specificity is a metric which focuses on true negative and
false positive results. The specificity is also high when the false pos-
itive cases are low. It is calculated using equation (2).

True negatives

monkeypox skin lesion images using deep learning. Specificity = (2)
True negatives + False psoitives
3. Results & discussion
The results are explained in depth in this section. The first section

Table 5

Calculated evaluation parameters for all deep learning models.
Trial Sensitivity Specificity Precision Accuracy F1-Score
GoogLeNet
1 0.966386555 0.988662132 0.985714286 0.978696742 0.975954738
2 0.971988796 0.977324263 0.971988796 0.974937343 0.971988796
3 0.963585434 0.977324263 0.971751412 0.971177945 0.967651195
4 0.952380952 0.975056689 0.968660969 0.964912281 0.960451977
GoogLeNet (Places-365)
1 0.966386555 0.984126984 0.980113636 0.976190476 0.973201693
2 0.966386555 0.979591837 0.974576271 0.973684211 0.970464135
3 0.957983193 0.986394558 0.982758621 0.973684211 0.970212766
4 0.960784314 0.961451247 0.952777778 0.961152882 0.956764296
SqueezeNet
1 0.977099237 0.984126984 0.982097187 0.980815348 0.979591837
2 0.941176 0.981859 0.976744 0.963659 0.958631
3 0.952380952 0.954648526 0.944444444 0.953634085 0.948396095
4 0.932773109 0.9569161 0.946022727 0.946115288 0.939351199
AlexNet
1 0.963585434 0.986394558 0.982857143 0.976190476 0.973125884
2 0.929971989 0.988662132 0.985163205 0.962406015 0.956772334
3 0.943977591 0.975056689 0.968390805 0.961152882 0.956028369
4 0.918767507 0.986394558 0.982035928 0.956140351 0.94934877
ResNet18
1 0.988795518 1 1 0.994987469 0.994366197
2 0.994397759 0.995464853 0.994397759 0.994987469 0.994397759
3 0.969187675 0.984126984 0.980169972 0.977443609 0.974647887
4 0.966386555 0.984126984 0.980113636 0.976190476 0.973201693
ViT B18
1 0.7926 0.6851 0.4977 0.7155 0.6114
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e Sensitivity (Recall): Sensitivity is a metric which emphasizes on true
positive and false negative results. The sensitivity is high when the
false negative cases are low. It is calculated using equation (3).

True positives

3)

Sensitivity = — -
True positives + False negatives

e Fl-score: Fl-score is a metric which considers both precision and
recall. It can be calculated using equation (4).

2 X Precision x Sensitivity

4

F1 —score = - —
Precison + Sensitivity

e Accuracy: Number of samples predicted accurately among all sam-
ples (Both Monkeypox and non Monkeypox). It is calculated using
equation (5).

True positives + True negatives

Accuracy = — - — -
True positives + True negatives + False positives + False negatives

)

3.2. Model evaluation

In this study, five deep learning models: GoogLeNet, GoogLeNet
(Places-365), SqueezeNet, AlexNet and ResNetl18 were used to classify
monkeypox from other similar diseases such as chicken pox and measles.
The fast computer-aided diagnosis using skin lesion images can be highly
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beneficial if the virus spreads rapidly. Table 3 shows the validation ac-
curacies and losses obtained by the classifiers. The learning rate consisted
of two values (0.001 and 0.0001), which was changed iteratively. Four
values were used to define mini batch size (16, 32, 64,128), which was
changed iteratively. Further, batch size of 128 was only provided to the
SqueezeNet and AlexNet models. All the models obtained a training ac-
curacy of 100%. ResNet18 obtained the highest validation accuracy of
99.49% during two trials.

GoogleNet obtained the highest accuracy of 97.86% during the first
run and the validation loss was 0.07. For the above run, the mini batch
size was set to 32 and the learning rate was set to 0.001%. GoogleNet
(Places-365) obtained the highest accuracy of 97.61% during the first
trial and the validation loss obtained was 0.09%. The mini batch size of
set to 64 and a learning rate of 0.001 was used. The SqueezeNet model
obtained a maximum accuracy of 98.08% and a validation loss 0.18
during the first run. The batch size was set to 16 and learning rate of
0.001 was used. A maximum accuracy of 97.61% was obtained by the
AlexNet model during its first run. The validation loss obtained was 0.10.
The mini batch size was set 16 and a learning rate of 0.0001 was used.
ResNet18 obtained a maximum accuracy of 99.50% during the first two
runs. The losses obtained were 0.0375 and 0.0235 respectively. The ac-
curacy obtained was equal when the batch size was set to 16 and 32. A
learning rate of 0.001 was utilized.

The values obtained by the confusion matrices are described in
Table 4. It can be observed that the number of false positive cases ob-
tained by the GoogleNet model was only five. During the third run of
GoogleNet (places-365), only six false positive cases were observed.

100 % ¥ - Fir
90
80
1
1] 4
\’: 1
< 60
> "
©
§ 500
< 40
30 -
20
10 |-
100 20
0 | | | | | |
0 0.5 1 1.5 2 25 3
Iteration 104
(a)
8
6
3
Sa
2
0 10 Qil
0 0.5 1 15 2 25 3
Iteration <104
(b)

Fig. 9. Accuracy and loss curve obtained for the best performing ResNet18 model (a) Accuracy curve — Training (Blue) & Validation (Black) (b) Loss curve. Training
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However, there were 15 false negative cases. During the first run of
SqueezeNet, the number of both false positive and false negative cases
obtained was less than 10. When compared to other models, the number
of false positive cases obtained by the AlexNet was comparatively higher.
During the first run of ResNet18, there were no false positive results
obtained. The number of false negative results obtained was four. From
the table, it can be seen that the false negative cases were comparatively
more compared to false positive cases.

Table 5 describes the metrics such as sensitivity, specificity, precision,
accuracy and Fl-score obtained by the test dataset. Among all the
models, the ResNetl8 was able to obtain a maximum sensitivity of
99.43%. The maximum sensitivity obtained by the GoogleNet, GoogleNet
(places-365), SqueezeNet and AlexNet were 92.19%, 96.63%, 97.70%
and 96.35%, respectively. The ResNet18 obtained a specificity of 100%
during the first run. The maximum specificity obtained by the GoogleNet,
GoogleNet (places-365), SqueezeNet and AlexNet were 98.86%, 98.63%,
98.41% and 98.86%. The ResNet18 was able to obtain a precision of
100% during the first run. The maximum precision obtained by the
GoogleNet, GoogleNet (places-365), SqueezeNet and AlexNet were
98.57%, 98.27%, 98.20% and 98.51%, respectively. The highest F1-score
was obtained by the ResNet18 model. The maximum F1-score obtained
by the GoogleNet, GoogleNet (places-365), SqueezeNet, AlexNet and
97.59%, 97.32%, 97.95%, 97.31% and 99.49%, respectively. It can be
concluded that the ResNet18 was the best performing model. In sum-
mary, all the five models were able to perform extremely well in
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classifying monkeypox skin lesion images. The models can serve as the
foundation of locally running applications on smartphones, enabling real
time and instantaneous detection of infection. The accuracy and loss
curve obtained for the ResNet18 model (best run) is depicted Fig. 9. The
accuracies of all the models (all runs) are compared in Fig. 10.

4. Discussion

ResNet-18 could perform better than GoogLeNet, GoogLeNet (Places
365), and SqueezeNet because it has a more straightforward and effective
architecture that enables it to learn more complex features with fewer
inputs. ResNet-18 employs residual blocks that combine and skip con-
nections between layers, assisting in the prevention of vanishing gradient
problem and enhancing gradient flow. Additionally, ResNet-18 uses less
memory, and it has fewer convolutional layers than GoogLeNet and
GoogLeNet (Places 365). Also, it does not make use of inception modules
like GoogLeNet and GoogLeNet (Places 365), which have numerous
branches with various filter sizes and pooling operations, which can
amplify noise and redundancy in feature maps. Finally, ResNet-18 has
more channels than SqueezeNet, which makes use of blocks that use
squeeze and excitation to lessen the number of channels and then re-
weight them according to their importance. That could lead to under-
fitting and loss of information.

As an alternate to convolutional neural networks, a vision transformer
model ViT B16 has been trained and validated on the same dataset. On
using similar hyperparameters during the training and validation, it has
been observed that the transformer-based model performs poorly in
comparison to the convolutional neural networks. These can be chalked
up to several reasons including but not limited to the limited size of the
dataset as vision transformers require large training datasets since it has
more parameters. The complexity of the dataset might also play an
important role in explaining its superior performance on pre-trained
convolutional neural networks as ResNet models perform well on data-
sets with high intraclass variation and low interclass variation. In stark
contrast, vision transformers work better on datasets with high interclass
variation and low intraclass variation.

The decisions made by deep learning models can be explained using
explainable techniques called explainable artificial intelligence (XAI).
Two techniques used in this work are Locally Interpretable Model-

Fig. 11. 11(a) and 11(e) represent class monkeypox and class normal respectively. 11(b) and 11(f) illustrate their respective LIME images. 11(c) and 11(g) are the
GradCAM visualization for the two classes. 11(d) and 11(h) show the top 7 features from the LIME visualization.
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agnostic Explanations (LIME) and Grad-CAM. LIME is a visualization tool
that highlights the important features as determined by the convolutional
neural network to dictate the training in making predictions. LIME ex-
plains the predictions of the classifier by locally approximating it using
an interpretable model [25]. A LIME object can be generated using a
specific query point and a defined number of significant predictors. This
will result in the creation of an artificial data set, which will be used to
train a simple and easy-to-understand model that explains the predictions
for the synthetic data centred around the query point. LIME is described
in Fig. 11 (b) for class ‘Monkeypox’ and 11(f) for class ‘Normal’ is rep-
resented by super pixels that use a regression tree. The warmer areas
represent the features of higher importance while the cooler areas have
lower importance in the decisions leading to the prediction.

This is supported by the explanations made by Grad-CAM, as repre-
sented in Fig. 11 (c) for class ‘Monkeypox’ and 11(g) for class ‘Normal’.
Grad-CAM is used to understand how the deep learning network makes
its classification decisions [26]. Grad-CAM uses the gradient information

GradCAM
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d
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GoogleNet
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GoogleNet
(365)

ResNetl8

g
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entering the last convolutional layer of the CNN to understand the
importance of each neuron in making the desired decision. Like LIME
explanations, the Grad-CAM explanations have regions with the warmer
regions representing those that are more responsible for making pre-
dictions while the cooler regions are not as important to the
decision-making process.

As represented in Fig. 11 (d) and 11(e) for classes ‘Monkeypox’ and
‘Normal’ respectively, the most important features in the decision mak-
ing can also be used to create an effective segment of only the relevant
features. These have been generated by creating a mask comprising of the
top seven features used that is then multiplied with the original image to
create a super pixel segmentation of the most important features.

The predictions made by the other convolutional neural networks can
also be visualised using the same explainable Al techniques as repre-
sented in Fig. 12. The same image from the dataset has been used to test
the five convolutional neural networks and explain the difference in their
accuracies. As observable, the top performing ResNet-18 based trial is

LIME

Top 7 Features

Fig. 12. Comparison of all convolutional neural network predictions' visualizations using GradCAM & LIME and further segmenting the top seven features using LIME.
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Table 6

Comparison of researches which use deep learning to diagnose monkeypox virus.

Medicine in Novel Technology and Devices 18 (2023) 100243

Reference Published Dataset Deep learning models used  Results obtained by the best model
year
Accuracy  Sensitivity  Specificity =~ Precision  F1-
score

Sitaula et al. [12] 2022 Monkeypox skin lesion images [27, 13 baseline models and 87.13% 85.47% - 85.44% 85.40%
28] one ensemble model

Sahin et al. [13] 2022 Monkeypox skin lesion images from Six baseline models 91.11% 90% - 90% 90%
Kaggle [16]

Abdelhamid et al. [15] 2022 Monkeypox skin lesion images from Four baseline models 98.8% 62% - 99.8% 76%
Kaggle [16]

Alakus et al. [14] 2022 DNA segences of monkeypox and Custom BiLSTM model 96.08% - - - -
human papilloma virus [23]

AKkin et al. [28] 2022 Monkeypox skin lesion images from 12 baseline models 98.25% 96.55% 100% 98.25%
Kaggle [16]

Our proposed study 2022 Monkeypox skin lesion images from Five baseline models 99.49% 99.43% 100% 100% 99.49%

Kaggle [16]

able to make its accurate predictions by accurately identifying the fea-
tures from the skin lesions in the image, while the other models use other
regions too.

In recent times, the Monkeypox virus has spread to over 75 countries,
threatening to be the next pandemic [27]. Deep learning has slowly
permeated the medical field in recent years, carrying innovation and
solutions that are transforming the face of healthcare industry [10]. Deep
learning enables the healthcare personnel to examine data at breakneck
speeds while maintaining accuracy. It is an intelligent combination of
mathematics and programming which filters patient data at an aston-
ishing rate. They are accurate, fast and efficient. They also have the
ability to learn new interesting patterns [11]. This can help gain valuable
insights in disease diagnosis. Deep learning has been used to diagnose
various diseases including monkeypox.

A few researches have been published which use deep learning
techniques to diagnose this dreaded virus. Sitaula et al. [12] used
pre-trained models to diagnose monkeypox. A maximum accuracy of
87.13% was obtained by the models. Xception and DenseNet-169 models
were ensembled to optimize the accuracy. Explainability was obtained
using gradient weighted class activation mapping. Sahin et al. [13]
developed a mobile application to classify monkeypox images. An
android application was developed using Java. The mobile captured the
images and transferred it to a CNN model. A maximum accuracy of
91.11% was obtained. Abdelhamid et al. [15] used AI-Biruni Earth
Radius Optimization for classification. A maximum accuracy of 98.8%
was obtained by the models. In yet another research, Alakus et al. [14]
used deep learning to diagnose monkeypox from Warts using DNA
sequencing. A maximum accuracy of 96.08% was obtained by the clas-
sifiers. The authors concluded that DNA sequences can be used to di-
agnose the monkeypox virus from other similar diseases such as smallpox
and measles. Explainable artificial intelligence (XAI) was used along with
CNN to classify monkeypox skin lesion images in another study [28]. 12
deep learning models were used to classify 572 skin lesion images into
two classes. Among all the models, MobileNetV2 obtained the highest
accuracy of 98.25%. Table 6 gives a detailed comparison of various re-
searches which use deep learning to diagnose monkeypox.

5. Conclusion

This study used four deep learning models: GoogLeNet, Places365-
GoogleNet, SqueezeNet, ResNet and AlexNet to diagnose Monkeypox
from skin lesion images. Through this experiment, we conclude that
GoogLeNet & Places365-GoogLeNet form a solid foundation for a deep
learning-based software for fast diagnosis of Monkeypox. These models
are also very lightweight and resource-efficient, making them ideal for
application in various healthcare facilities. Further, these models can also
be implemented in rural areas where the prevalence of PCR tests is
limited. Combining a computer with a camera or a modern smartphone

12

with this model implemented can serve as the first step of instant diag-
nosis. ResNet-18 can be used due to its robustness in scenarios where the
device hardware is not present. On severely performance-limited devices
with slower hardware, SqueezeNet and AlexNet can also serve as a good
foundation for a CNN model to detect the presence of Monkeypox
infection in the patient with images of skin lesions with a minimal drop in
accuracy. Given the ubiquity of smartphones and their ever-improving
cameras and processing units, the feasibility of using these deep
learning-based models is excellent. In smartphones released over the past
few years, chip designers such as Apple, Google, Qualcomm and Medi-
aTek have designed dedicated hardware in their system-on-chips to
accelerate machine learning and deep learning tasks. Leveraging the
high-resolution smartphone sensors coupled with the dedicated high-
performance hardware for running these models, this method to iden-
tify the presence of monkeypox infection will help bring an effective,
reliable, low-cost and reliable monkeypox detection to the masses and in
places where the infrastructure to support PCR testing is unavailable.
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